Friction

Friction $\left(\overrightarrow{F_{f}}\right)$ is a force that opposes the motion between two surfaces that are in contact.

Friction acts:

- parallel to the surfaces that are in contact
- opposite to the direction of motion of the object

There are two kinds of frictional forces:

1. Static Friction

- force that opposes the start of motion
- exists between any two objects that are in contact
- has a maximum value
- when the applied force exceeds the maximum value, the object begins to move

2. Kinetic Friction

- force that opposes motion
- acts between any two objects that are in relative motion
- its magnitude is less than that of static friction for the same surfaces

The amount of friction that acts depends on two things:

1. The force pushing the surfaces together $\left(\overrightarrow{F_{N}}\right)$.
2. The nature of the surfaces in contact.

Mathematically, this can be expressed as:

$$
F_{f}=\mu \cdot F_{N}
$$

Where $\mu(\mathrm{mu})$ is the coefficient of friction. The coefficient of friction is a constant that depends upon the nature of the two surfaces that are in contact.

Note:

$$
\begin{array}{ll}
\text { Static Friction } & F_{f} \leq \mu_{s} \cdot F_{N} \\
\text { Kinetic Friction } & F_{f}=\mu_{k} \cdot F_{N}
\end{array}
$$

Example 1

Given the diagram of a 25 kg mass, determine the velocity of the mass after 3 s (assume it started from rest).

Example 2

Given the diagram of a 15 kg mass, determine the time required to move down the 10 m long ramp if the object started from rest.

Dynamics Worksheet \#1

1. A horizontal force of 50 N is required to pull an 8.0 kg block of aluminum at a uniform velocity across a horizontal wooden desk. What is the coefficient of kinetic friction? (0.64)
2. A force of 40 N accelerates a 5.0 kg block at $6.0 \mathrm{~m} / \mathrm{s}^{2}$ along a horizontal surface.
a. How large is the frictional force? $(-10 N)$
b. What is the coefficient of friction? (0.20)
3. Rachel pulls her 18 kg suitcase at a constant speed by pulling on a handle that makes an angle θ with the horizontal. The frictional force on the suitcase is $27 N$ and Rachel exerts a $43 N$ force on the handle.
a. What angle does the handle make with the horizontal? $\left(51^{\circ}\right)$
b. What is the normal force exerted on the suitcase? $(143 N)$
4. A 20 kg box is dragged across a level floor with a force of 100 N . The force is applied at an angle of 40° above the horizontal. If the coefficient of kinetic friction is 0.32 , what is the acceleration of the box? $\left(1.72 \mathrm{~m} / \mathrm{s}^{2}\right)$
5. You place a box weighing $215 N$ on an inclined plane that makes a 35° angle with the horizontal. Compute the component of the gravitational force acting down the inclined plane. (123N)
6. A 6 kg mass slides down a frictionless inclined plane. The plane makes a 25° angle with the horizontal. Calculate the acceleration of the mass. ($4.14 \mathrm{~m} / \mathrm{s}^{2}$)
7. A 200 kg crate rests on an inclined plane inclined 40° to the horizontal. What is the force of friction? $(-1260 N)$
8. A boy on a toboggan is sliding down a snow-covered hillside. The boy and toboggan together have a mass of 50 kg , and the slope is at an angle of 30° to the horizontal. Find the boy's acceleration if the coefficient of kinetic friction is $0.15 .\left(3.6 \mathrm{~m} / \mathrm{s}^{2}\right)$
9. You slide a $325 N$ trunk up a 20° inclined plane with a constant velocity by exerting a force of 211 N parallel to the inclined plane.
a. What is the component of the trunk's weight parallel to the plane? (111N[DTS])
b. What is the sum of your applied force, friction, and the parallel component of the trunk's weight? Why? (0)
c. What is the size and direction of the friction force? $(100 N[D T S])$
d. What is the coefficient of friction? (0.33)
10. What force would you have to exert on the trunk in Problem 9 so that it would slide down the plane with a constant velocity? What would be the direction of the force? ($11 \mathrm{~N}[U T S]$)
11. A 2.5 kg block slides down a 25° inclined plane with constant acceleration. The block starts from rest at the top. At the bottom, its velocity reaches $0.65 \mathrm{~m} / \mathrm{s}$. The length of the incline is 1.6 m .
a. What is the acceleration of the block? $\left(0.13 \mathrm{~m} / \mathrm{s}^{2}\right)$
b. What is the coefficient of friction between the plane and the block? (0.45)
c. Does the result of either a or b depend on the mass of the block?

"I think you should be more
explicit here in step two."
